
Referee System Serial Port Protocol
Appendix

Publisher: RoboMaster Organizing Committee (RMOC)

Version: V1.1

Date: 2019-03-08

2 © 2019 DJI All Rights Reserved

Release Notes
Date Version Changes

2019.2.25 V1.0 Release

2019.3.8 V1.1 1. Add the projectile number of the action identification data of the

Battlefield Projectile Supplier

2. Add the supply robot ID of the Projectile Supplier

3. Fix the content ID of the interactive data between student robots

4. Update byte offset description of Battlefield event data

5. Update remarks of the client custom data

© 2019 DJI All Rights Reserved 3

1. Serial Port Configuration
The communication interface is serial port, which is configured with 115200 baud rate, 8 data bits and

1 stop bit while there is no hardware flow control or parity bit.

4 © 2019 DJI All Rights Reserved

2. Port Protocol Description
Communication protocol format:

frame_header (5-byte) cmd_id (2-byte) data (n-byte)
frame_tail (2-byte, CRC16, whole

package check)

Table 1 frame_header Format

SOF data_length seq CRC8

1-byte 2-byte 1-byte 1-byte

Table 2 Frame Header Definition

Domain Offset Position Size (byte) Description

SOF 0 1 Starting byte of data frame, whose fixed value is 0xA5

data_length 1 2 The length of data inside the data frame

seq 3 1 Package sequence number

CRC8 4 1 Frame header CRC8 Check

Table 3 cmd_id Command Code IDs Description

Command Code Data Segment Length Function Description

0x0001 3 Competition status data, whose transmitting cycle is 1Hz

0x0002 1
Competition result data, which is transmitted at the end of

the competition

0x0003 2
Competition robots survival data, whose transmitting

cycle is 1Hz

© 2019 DJI All Rights Reserved 5

Command Code Data Segment Length Function Description

0x0101 4
Battlefield event data, which is transmitted after the event

has happened

0x0102 3
Battlefield Projectile Supplier action identification data,

which is transmitted after the action is changed

0x0103 2

Request projectile supply data from the Projectile

Supplier. The data is then transmitted by the team and the

upper limit is 10Hz. (RoboMaster Robotics Competition is

not yet available)

0x0201 15 Robot status data, whose transmitting cycle is 10Hz

0x0202 14
Real-time power and barrel heat data, whose transmitting

cycle is 50Hz

0x0203 16 Robot’s position data, whose transmitting cycle is 10Hz

0x0204 1
Robot gain data, which is transmitted after the gain status

is changed

0x0205 3

Aerial energy status data, whose transmitting cycle is

10Hz and it is only transmitted by the Aerial’s main

controller

0x0206 1
Damage status data, which is transmitted after the

damage occurs

0x0207 6
Real-time shooting data, which is transmitted after the

projectile is launched

0x0301 n
Interaction data between robots, which is triggered to

transmit by the sender and the upper limit is 10Hz

6 © 2019 DJI All Rights Reserved

Detailed Description

1. Competition status data: 0x0001. Transmission frequency: 1Hz

Byte Offset Size Description

0 1

0-3 bit: Competition Type

• 1: RoboMaster Robotics Competition;

• 2: RoboMaster Technical Challenge;

• 3: RoboMaster ICRA

4-7 bit: Current Competition Stage

• 0: Pre-match;

• 1: Setup Period;

• 2: Referee System Initialization Period;

• 3: 5-second Countdown;

• 4: Round Period;

• 5: Calculation Period

1 2 Remaining time of the current period (unit: s)

typedef __packed struct
{
 uint8_t game_type : 4;
 uint8_t game_progress : 4;
 uint16_t stage_remain_time;
} ext_game_state_t;

2. Competition result data: 0x0002. Transmission frequency: send after the competition

Byte Offset Size Description

0 1
0: Draw;

1: Red win;

© 2019 DJI All Rights Reserved 7

Byte Offset Size Description

2: Blue win

typedef __packed struct
{
 uint8_t winner;
} ext_game_result_t;

3. Robot survival data: 0x0003. Transmission frequency: 1Hz

Byte Offset Size Description

0 2

bit 0: Red Hero;

bit 1: Red Engineer;

bit 2: Red Standard #1;

bit 3: Red Standard #2;

bit 4: Red Standard #3;

bit 5: Red Aerial;

bit 6: Red Sentry;

bit 7: Reserved

bit 8: Blue Hero;

bit 9: Blue Engineer;

bit 10: Blue Standard #1;

bit 11: Blue Standard #2;

bit 12: Blue Standard #3;

bit 13: Blue Aerial;

bit 14: Blue Sentry;

bit 15: Reserved

8 © 2019 DJI All Rights Reserved

Byte Offset Size Description

A corresponding bit value of 1 indicates that the robot is alive, and a value of 0

indicates that the robot is defeated or has not entered the stage.

typedef __packed struct
{
 uint16_t robot_legion;
} ext_game_robot_survivors_t;

4. Battlefield event data: 0x0101. Transmission frequency: send after the event changes

Byte Offset Size Description

0 4

bit 0-1: The occupation status of your Landing Pad

• 0 indicates no robot occupies;

• 1 indicates that Aerial has occupied the Landing Pad but does not stop

the propeller;

• 2 indicates that Aerial has occupied the Landing Pad and stopped the

propeller

bit 2: The occupation status of the #1 Restoration Zone of your Projectile Supplier

and 1 indicates as occupied;

bit 3: The occupation status of the #2 Restoration Zone of your Projectile Supplier

and 1 indicates as occupied;

bit 4: The occupation status of the #3 Restoration Zone of your Projectile Supplier

and 1 indicates as occupied;

bit 5-6: Your Large Power Rune status:

• 0 indicates that the striking point is not occupied and Large Power Rune

is not activated;

• 1 indicates that the striking point is occupied but Large Power Rune is

not activated;

© 2019 DJI All Rights Reserved 9

Byte Offset Size Description

• 2 indicates that Large Power Rune is activated;

• 3 indicates that Large Power Rune is activated and the striking point is

occupied.

bit 7: The occupation status of your Bridge End Platform and 1 indicates as

occupied;

bit 8: The occupation status of your Bunker and 1 indicates as occupied;

bit 9: The occupation status of your Resource Island and 1 indicates as occupied;

bit 10-11: The defense status of your Base:

• 2 indicates that Base is 100% defense;

• 1 indicates that Base is defended with Sentry;

• 0 indicates that Base has no defense

bit 12-13: ICRA Red Team Defense Bonus

• 0 indicates that Defense Bonus has not been activated

• 1 indicates that Defense Bonus 5s has been triggered and is activating

• 2 indicates that Defense Bonus has been activated

bit 14-15: ICRA Blue Team Defense Bonus

• 0 indicates that Defense Bonus has not been activated

• 1 indicates that Defense Bonus 5s has been triggered and is activating

• 2 indicates that Defense Bonus has been activated

Other bits are reserved.

typedef __packed struct
{
 uint32_t event_type;
} ext_event_data_t;

10 © 2019 DJI All Rights Reserved

5. Projectile Supplier Zone action identification: 0x0102. Transmission frequency: send after the

action changes

Byte Offset Size Description

0 1

Projectile Supplier outlet ID:

1: Projectile Supplier outlet #1;

2: Projectile Supplier outlet #2

1 1

Projectile Supply robot ID: 0 indicates that no robot supplies projectile; 1 indicates

that Red Hero supplies; 2 Red Engineer; 3/4/5 Red Standard; 11 Blue Hero; 12

Blue Engineer; 13/14/15 Blue Standard

2 1
The open and close mode of Projectile outlet: 0 indicates close; 1 indicates

preparing for projectiles, 2 indicates falling projectiles

3 1

Quantity of Projectile Supply:

50: 50 projectiles

100: 100 projectiles

150: 150 projectiles

200: 200 projectiles

typedef __packed struct
{
 uint8_t supply_projectile_id;
 uint8_t supply_robot_id;
 uint8_t supply_projectile_step;
} ext_supply_projectile_action_t;

6. Request Projectile Supplier to supply projectiles: cmd_id (0x0103). Transmission frequency:

upper limit 10Hz. RoboMaster Robotics Competition is not yet available.

Byte Offset Size Description

0 1 Projectile Supplier outlet ID:

© 2019 DJI All Rights Reserved 11

Byte Offset Size Description

1: Projectile Supplier outlet #1

1 1

Projectile Supply robot ID: 1 indicates that Red Hero supplies; 2 Red

Engineer; 3/4/5 Red Standard; 11 Blue Hero; 12 Blue Engineer;

13/14/15 Blue Standard

1 1
Quantity of Projectile Supply:

50: request 50 projectiles

typedef __packed struct
{
 uint8_t supply_projectile_id;
 uint8_t supply_robot_id;
 uint8_t supply_num;
} ext_supply_projectile_booking_t;

7. Match robot status: 0x0201. Transmission frequency: 10Hz

Byte Offset Size Description

0 1

Robot ID:

1: Red Hero;

2: Red Engineer;

3/4/5: Red Standard;

6: Red Aerial;

7: Red Sentry;

11: Blue Hero;

12: Blue Engineer;

13/14/15: Blue Standard;

16: Blue Aerial;

12 © 2019 DJI All Rights Reserved

Byte Offset Size Description

17: Blue Sentry

1 1

Robot level:

1: level one;

2: level two;

3: level three

2 2 Robot Remaining HP

4 2 Robot Maximum HP

6 2 17 mm barrel cooling value per second

8 2 17 mm barrel heat limit

10 2 42 mm barrel cooling value per second

12 2 42 mm barrel heat limit

14 1

Main controller power output status:

0 bit: gimbal port output: 1 indicates 24V output, 0 indicates no 24V output;

1 bit: chassis port output: 1 indicates 24V output, 0 indicates no 24V output;

2 bit: shooter port output: 1 indicates 24V output, 0 indicates no 24V output;

typedef __packed struct
{
 uint8_t robot_id;
 uint8_t robot_level;
 uint16_t remain_HP;
 uint16_t max_HP;
 uint16_t shooter_heat0_cooling_rate;
 uint16_t shooter_heat0_cooling_limit;
 uint16_t shooter_heat1_cooling_rate;
 uint16_t shooter_heat1_cooling_limit;
 uint8_t mains_power_gimbal_output : 1;
 uint8_t mains_power_chassis_output : 1;

© 2019 DJI All Rights Reserved 13

 uint8_t mains_power_shooter_output : 1;
} ext_game_robot_state_t;

8. Real-time power and barrel heat data: 0x0202. Transmission frequency: 50Hz

typedef __packed struct
{
 uint16_t chassis_volt;
 uint16_t chassis_current;
 float chassis_power;
 uint16_t chassis_power_buffer;
 uint16_t shooter_heat0;
 uint16_t shooter_heat1;
} ext_power_heat_data_t;

9. Robot position: 0x0203. Transmission frequency: 10Hz

Byte Offset Size Description

0 4 Position x coordinate (unit: m)

4 4 Position y coordinate (unit: m)

8 4 Position z coordinate (unit: m)

12 4 Barrel position (unit: degree)

Byte Offset Size Description

0 2 Chassis output voltage (unit: mV)

2 2 Chassis output current (unit: mA)

4 4 Chassis output power (unit: W)

8 2 Chassis power buffer (unit: J)

10 2 17 mm barrel heat

12 2 42 mm barrel heat

14 © 2019 DJI All Rights Reserved

typedef __packed struct
{
 float x;
 float y;
 float z;
 float yaw;
} ext_game_robot_pos_t;

10. Robot gain: 0x0204. Transmission frequency: send after the buff status changes

Byte Offset Size Description

0 1

bit 0: robot HP restoration status

bit 1: barrel heat cooling rate accelerates

bit 2: robot defense bonus

bit 3: robot attack bonus

Other bits are reserved

typedef __packed struct
{
 uint8_t power_rune_buff;
}ext_buff_musk_t;

11. Aerial energy status: 0x0205. Transmission frequency: 10Hz

Byte Offset Size Description

0 1 Accumulated energy points

1 2 Attack time (unit: s). Drop to 0 in 50s

typedef __packed struct
{
 uint8_t energy_point;
 uint8_t attack_time;
} aerial_robot_energy_t;

12. Damage status: 0x0206. Transmission frequency: send after damage happens

© 2019 DJI All Rights Reserved 15

Byte Offset Size Description

0 1

bit 0-3: when the HP change type is armor damage, it indicates the armor ID and

the value 0-4 represents the five armor modules of the robot. As for other HP

change types, the variable value is 0.

bit 4-7: HP Change Type

0x0 HP deduction from armor damage;

0x1 HP deduction from module offline;

0x2 HP deduction from exceeding the barrel heat limit;

0x3 HP deduction from exceeding the chassis power.

typedef __packed struct
{
 uint8_t armor_id : 4;
 uint8_t hurt_type : 4;
} ext_robot_hurt_t;

13. Real-time shooting data: 0x0207. Transmission frequency: send after shooting

Byte Offset Size Description

0 1

Projectile type:

• 1: 17 mm projectile

• 2: 42 mm projectile

1 1 Projectile frequency of launch (unit: Hz)

2 4 Projectile speed of launch (unit: m/s)

typedef __packed struct
{
 uint8_t bullet_type;
 uint8_t bullet_freq;
 float bullet_speed;
} ext_shoot_data_t;

16 © 2019 DJI All Rights Reserved

3. Interactive data between robots
The interactive data includes a unified data segment header structure. The data segment consists of

the content ID, the sender and the receiver's ID and the content data segment. The total length of the

entire interactive data packet is up to 128 bytes, with the subtraction of the 9 bytes of frame_header,

cmd_id and frame_tail and the 6 bytes of the data segment header structure, thus the content data

segment that is sent is 113 at most. The upload frequency of the entire interactive data package

0x0301 is 10Hz.

1. Interactive data receiving information: 0x0301. Transmission frequency: maximum 10Hz

Byte Offset Size Description Remarks

0 2 Content ID of data segment

2 2 Sender ID

Need to verify the correctness of the sender ID.

For example, if Red 1 is sent to Red 5, this item

needs to check Red 1.

4 2 Receiver ID

Need to verify the correctness of the receiver ID.

For example, you cannot send to the enemy

robot’s ID.

6 x Content data segment x is 113 atmost

typedef __packed struct
{
 uint16_t data_cmd_id;
 uint16_t send_ID;
 uint16_t receiver_ID;
}ext_student_interactive_header_data_t;

Content ID
Length (head structure length +

content data segment length)
Function Description

0xD180 6 + 13 Client custom data

0x0200~0x02FF 6+n
Communication between your

robots

© 2019 DJI All Rights Reserved 17

Since there are multiple content IDs while the entire cmd_id upload frequency is up to 10Hz, please

arrange the bandwidth reasonably.

ID Description

1. Robot ID: 1, Hero (Red) ; 2, Engineer (Red) ; 3/4/5, Standard (Red) ; 6, Aerial (Red) ; 7, Sentry

(Red) ; 11, Hero (Blue) ; 12, Engineer (Blue) ; 13/14/15, Standard (Blue) ; 16, Aerial (Blue) ; 17,

Sentry (Blue) .

2. Client ID: 0x0101 for Hero operator’s client (Red); 0x0102, Engineer operator’s client (Red);

0x0103/0x0104/0x0105, Standard operator’s client (Red); 0x0106, Aerial operator’s client (Red);

0x0111, Hero operator’s client (Blue); 0x0112, Engineer operator’s client (Blue);

0x0113/0x0114/0x0115, Standard operator’s client (Blue); 0x0116, Aerial operator’s client (Blue).

Client custom data: cmd_id: 0x0301. Content ID: 0xD180.

1. Client. Client custom data: cmd_id: 0x0301. Content ID: 0xD180. Transmission frequency:

Maximum 10Hz

Byte Offset Size Description Remarks

0 2 Data content ID 0xD180

2 2 Sender ID
Need to verify the correctness of the sender’s robot

ID

4 2 Client ID
Can only be the corresponding client of the sender’s

robot

6 4 Custom float point data 1
Display the float point data on the Client custom data

display panel

10 4 Custom float point data 2
Display the float point data on the Client custom data

display panel

18 © 2019 DJI All Rights Reserved

Byte Offset Size Description Remarks

14 4 Custom float point data 3
Display the float point data on the Client custom data

display panel

18 1 Custom 8-bit data 4

Bit 0-5: control the six indicators on the Client custom

data display panel individually. When the value is 1,

the indicator turns solid green and 0 turns solid red

Bit 6-7: reserved

typedef __pack struct
{
float data1;
float data2;
float data3;
uint8_t masks;
} client_custom_data_t

Communication between student robots: cmd_id 0x0301; content ID: 0x0200~0x02FF

2. Interactive data. Communication between robots: 0x0301. Transmission frequency: Maximum

10Hz

Byte Offset Size Description Remarks

0 2 Data content ID

0x0200~0x02FF

Can be selected in the above ID segments and the specific

ID definition is customized by the team

2 2 Sender ID Need to verify the correctness of the sender ID

4 2 Receiver ID
Need to verify the correctness of the receiver ID. For

example, you cannot send to the enemy robot’s ID.

6 n Data segment n should be smaller than 113

© 2019 DJI All Rights Reserved 19

typedef __pack struct
{
uint8_t data[]
} robot_interactive_data_t

CRC Check Code Example

//crc8 generator polynomial: G(x)=x8+x5+x4+1
const unsigned char CRC8_INIT = 0xff;
const unsigned char CRC8_TAB[256] =
{
0x00, 0x5e, 0xbc, 0xe2, 0x61, 0x3f, 0xdd, 0x83, 0xc2, 0x9c, 0x7e, 0x20, 0xa3, 0xfd, 0x1f, 0x41,
0x9d, 0xc3, 0x21, 0x7f, 0xfc, 0xa2, 0x40, 0x1e, 0x5f, 0x01, 0xe3, 0xbd, 0x3e, 0x60, 0x82, 0xdc,
0x23, 0x7d, 0x9f, 0xc1, 0x42, 0x1c, 0xfe, 0xa0, 0xe1, 0xbf, 0x5d, 0x03, 0x80, 0xde, 0x3c, 0x62,
0xbe, 0xe0, 0x02, 0x5c, 0xdf, 0x81, 0x63, 0x3d, 0x7c, 0x22, 0xc0, 0x9e, 0x1d, 0x43, 0xa1, 0xff,
0x46, 0x18, 0xfa, 0xa4, 0x27, 0x79, 0x9b, 0xc5, 0x84, 0xda, 0x38, 0x66, 0xe5, 0xbb, 0x59, 0x07,
0xdb, 0x85, 0x67, 0x39, 0xba, 0xe4, 0x06, 0x58, 0x19, 0x47, 0xa5, 0xfb, 0x78, 0x26, 0xc4, 0x9a,
0x65, 0x3b, 0xd9, 0x87, 0x04, 0x5a, 0xb8, 0xe6, 0xa7, 0xf9, 0x1b, 0x45, 0xc6, 0x98, 0x7a, 0x24,
0xf8, 0xa6, 0x44, 0x1a, 0x99, 0xc7, 0x25, 0x7b, 0x3a, 0x64, 0x86, 0xd8, 0x5b, 0x05, 0xe7, 0xb9,
0x8c, 0xd2, 0x30, 0x6e, 0xed, 0xb3, 0x51, 0x0f, 0x4e, 0x10, 0xf2, 0xac, 0x2f, 0x71, 0x93, 0xcd,
0x11, 0x4f, 0xad, 0xf3, 0x70, 0x2e, 0xcc, 0x92, 0xd3, 0x8d, 0x6f, 0x31, 0xb2, 0xec, 0x0e, 0x50,
0xaf, 0xf1, 0x13, 0x4d, 0xce, 0x90, 0x72, 0x2c, 0x6d, 0x33, 0xd1, 0x8f, 0x0c, 0x52, 0xb0, 0xee,
0x32, 0x6c, 0x8e, 0xd0, 0x53, 0x0d, 0xef, 0xb1, 0xf0, 0xae, 0x4c, 0x12, 0x91, 0xcf, 0x2d, 0x73,
0xca, 0x94, 0x76, 0x28, 0xab, 0xf5, 0x17, 0x49, 0x08, 0x56, 0xb4, 0xea, 0x69, 0x37, 0xd5, 0x8b,
0x57, 0x09, 0xeb, 0xb5, 0x36, 0x68, 0x8a, 0xd4, 0x95, 0xcb, 0x29, 0x77, 0xf4, 0xaa, 0x48, 0x16,
0xe9, 0xb7, 0x55, 0x0b, 0x88, 0xd6, 0x34, 0x6a, 0x2b, 0x75, 0x97, 0xc9, 0x4a, 0x14, 0xf6, 0xa8,
0x74, 0x2a, 0xc8, 0x96, 0x15, 0x4b, 0xa9, 0xf7, 0xb6, 0xe8, 0x0a, 0x54, 0xd7, 0x89, 0x6b, 0x35,
};
unsigned char Get_CRC8_Check_Sum(unsigned char *pchMessage,unsigned int
dwLength,unsigned char ucCRC8)
{
unsigned char ucIndex;
while (dwLength--)
{
ucIndex = ucCRC8^(*pchMessage++);
ucCRC8 = CRC8_TAB[ucIndex];
}
return(ucCRC8);
}
/*
** Descriptions: CRC8 Verify function

20 © 2019 DJI All Rights Reserved

** Input: Data to Verify,Stream length = Data + checksum
** Output: True or False (CRC Verify Result)
*/
unsigned int Verify_CRC8_Check_Sum(unsigned char *pchMessage, unsigned int dwLength)
{
unsigned char ucExpected = 0;
if ((pchMessage == 0) || (dwLength <= 2)) return 0;
ucExpected = Get_CRC8_Check_Sum (pchMessage, dwLength-1, CRC8_INIT);
return (ucExpected == pchMessage[dwLength-1]);
}
/*
** Descriptions: append CRC8 to the end of data
** Input: Data to CRC and append,Stream length = Data + checksum
** Output: True or False (CRC Verify Result)
*/
void Append_CRC8_Check_Sum(unsigned char *pchMessage, unsigned int dwLength)
{
unsigned char ucCRC = 0;
if ((pchMessage == 0) || (dwLength <= 2)) return;
ucCRC = Get_CRC8_Check_Sum ((unsigned char *)pchMessage, dwLength-1, CRC8_INIT);
pchMessage[dwLength-1] = ucCRC;
}

uint16_t CRC_INIT = 0xffff;
const uint16_t wCRC_Table[256] =
{
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,

© 2019 DJI All Rights Reserved 21

0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
}；
/*
** Descriptions: CRC16 checksum function
** Input: Data to check,Stream length, initialized checksum
** Output: CRC checksum
*/
uint16_t Get_CRC16_Check_Sum(uint8_t *pchMessage,uint32_t dwLength,uint16_t wCRC)
{
Uint8_t chData;
if (pchMessage == NULL)
{
return 0xFFFF;
}
while(dwLength--)
{
chData = *pchMessage++;
(wCRC) = ((uint16_t)(wCRC) >> 8) ^ wCRC_Table[((uint16_t)(wCRC) ^ (uint16_t)(chData)) &
0x00ff];

22 © 2019 DJI All Rights Reserved

}
return wCRC;
}

/*
** Descriptions: CRC16 Verify function
** Input: Data to Verify,Stream length = Data + checksum
** Output: True or False (CRC Verify Result)
*/
uint32_t Verify_CRC16_Check_Sum(uint8_t *pchMessage, uint32_t dwLength)
{
uint16_t wExpected = 0;
if ((pchMessage == NULL) || (dwLength <= 2))
{
return __FALSE;
}
wExpected = Get_CRC16_Check_Sum (pchMessage, dwLength - 2, CRC_INIT);
return ((wExpected & 0xff) == pchMessage[dwLength - 2] && ((wExpected >> 8) & 0xff) ==
pchMessage[dwLength - 1]);
}

/*
** Descriptions: append CRC16 to the end of data
** Input: Data to CRC and append,Stream length = Data + checksum
** Output: True or False (CRC Verify Result)
*/
void Append_CRC16_Check_Sum(uint8_t * pchMessage,uint32_t dwLength)
{
uint16_t wCRC = 0;
if ((pchMessage == NULL) || (dwLength <= 2))
{
return;
}
wCRC = Get_CRC16_Check_Sum ((U8 *)pchMessage, dwLength-2, CRC_INIT);
pchMessage[dwLength-2] = (U8)(wCRC & 0x00ff);
pchMessage[dwLength-1] = (U8)((wCRC >> 8)& 0x00ff);

	Release Notes
	1. Serial Port Configuration
	2. Port Protocol Description
	Table 1 frame_header Format
	Table 2 Frame Header Definition
	Table 3 cmd_id Command Code IDs Description
	Detailed Description
	1. Competition status data: 0x0001. Transmission frequency: 1Hz
	2. Competition result data: 0x0002. Transmission frequency: send after the competition
	3. Robot survival data: 0x0003. Transmission frequency: 1Hz
	4. Battlefield event data: 0x0101. Transmission frequency: send after the event changes
	5. Projectile Supplier Zone action identification: 0x0102. Transmission frequency: send after the action changes
	6. Request Projectile Supplier to supply projectiles: cmd_id (0x0103). Transmission frequency: upper limit 10Hz. RoboMaster Robotics Competition is not yet available.
	7. Match robot status: 0x0201. Transmission frequency: 10Hz
	8. Real-time power and barrel heat data: 0x0202. Transmission frequency: 50Hz
	9. Robot position: 0x0203. Transmission frequency: 10Hz
	10. Robot gain: 0x0204. Transmission frequency: send after the buff status changes
	11. Aerial energy status: 0x0205. Transmission frequency: 10Hz
	12. Damage status: 0x0206. Transmission frequency: send after damage happens
	13. Real-time shooting data: 0x0207. Transmission frequency: send after shooting

	3. Interactive data between robots
	1. Interactive data receiving information: 0x0301. Transmission frequency: maximum 10Hz
	ID Description
	1. Robot ID: 1, Hero (Red) ; 2, Engineer (Red) ; 3/4/5, Standard (Red) ; 6, Aerial (Red) ; 7, Sentry (Red) ; 11, Hero (Blue) ; 12, Engineer (Blue) ; 13/14/15, Standard (Blue) ; 16, Aerial (Blue) ; 17, Sentry (Blue) .
	2. Client ID: 0x0101 for Hero operator’s client (Red); 0x0102, Engineer operator’s client (Red); 0x0103/0x0104/0x0105, Standard operator’s client (Red); 0x0106, Aerial operator’s client (Red); 0x0111, Hero operator’s client (Blue); 0x0112, Engineer o...
	1. Client. Client custom data: cmd_id: 0x0301. Content ID: 0xD180. Transmission frequency: Maximum 10Hz
	2. Interactive data. Communication between robots: 0x0301. Transmission frequency: Maximum 10Hz

