

2 © 2024 DJI All Rights Reserved.

Change Log
Date Version Changes

January 26, 2024 V1.6.1

1. Revised command codes 0x0101, 0x0201, 0x0203, 0x0209, 0x020A,

0x0303.

2. Resolved known issues such as inconsistent data segment lengths and

structure definition errors.

3. Optimized some descriptions.

November 22, 2023 V1.6

1. Revised the transmission frequencies for command codes 0x0001,

0x0101, 0x0105, 0x0203, 0x0205, 0x020A

2. Revised command codes 0x0101, 0x0102, 0x0104, 0x0105, 0x0201,

0x0203, 0x0209, 0x0301, 0x0303, 0x0307.

3. Added command codes 0x020D, 0x020E, 0x0308.

4. Optimized some descriptions.

July 7, 2023 V1.5

1. Added descriptions about the transmission/trigger conditions and

sender/receiver of all command words.

2. Added descriptions about the regular link and VTM link of the Referee

System.

3. Revised command codes 0x0101, 0x0204, 0x0205, 0x0208, and

0x0209.

4. Added command codes 0x020B, 0X020C, 0x0307, and 0x0306.

5. Deleted command codes 0x0004, 0x0005, and 0x0103.

6. Optimized some descriptions.

August 5, 2022 V1.4
Revised the transmission frequencies and trigger methods for command

codes 0x0001, 0x0003, 0x0101, 0x0105, 0x0204, 0x0208, and 0x0209.

December 31, 2021 V1.3
Revised the distribution of the Buff/Debuff Zones and lurking mode in the

RoboMaster AI Challenge. 0x0005

April 30, 2021 V1.2 Fixed some errors.

© 2024 DJI All Rights Reserved. 3

Date Version Changes

April 19, 2021 V1.1 Fixed some errors.

February 3, 2021 V1.0 First release

4 © 2024 DJI All Rights Reserved.

Table of Contents
Change Log .. 2

1. Serial Port Protocol Format ... 5

2. Command Code IDs and Regular Link Data Description ... 7

3. Small Map Interaction Data ... 35

3.1 Data Transmission by Player Clients ... 35

3.2 Data Receiving by Player Clients .. 36

4. VTM Link Data Descriptions ... 39

4.1 Custom Controller and Robot Interaction Data Descriptions .. 39

4.2 Keyboard-Mouse Remote Control Data .. 39

5. Non-Link Data Description ... 41

Appendix 1 CRC Code Samples ... 43

Appendix 2 ID Descriptions .. 47

© 2024 DJI All Rights Reserved. 5

1. Serial Port Protocol Format
The serial port is used for communication and is configured with a Baud rate of 115200, an 8-bit data bit, and a 1-

bit stop bit without hardware flow control and check bit.

Table 1-1 Communication protocol format

frame_header cmd_id data frame_tail

5-byte 2-byte n-byte
2-byte, CRC16, full packet

check

Table 1-2 Frame header format

SOF data_length seq CRC8

1-byte 2-byte 1-byte 1-byte

Table 1-3 Frame header definitions

Domain Offset Position Size (Byte) Description

SOF 0 1 Data frame start byte; the fixed value is 0×A5

data_length 1 2 Length of data in the data frame

seq 3 1 Sequence number

CRC8 4 1 Frame header CRC8

There are two types of serial port data links for the Referee System: regular links and VTM links.

 For regular links, data is relayed via the Referee System's server and Main Controller Module, where it is

transmitted and received by the user serial port of the Power Management Module, as shown below:

6 © 2024 DJI All Rights Reserved.

 VTM links involve relaying data through the Referee System's player client and VTM, where it is transmitted

and received by the serial port of the VTM (Transmitter), as shown below:

 In the normal operating state, the delay of data transmission through the Referee System is

approximately 130 ms, with a packet loss rate of less than 1%.

 In a Competition Area with poor network conditions, the delay of data transmission through the

Referee System is approximately 200 ms, with a packet loss rate of approximately 3%.

 There may be errors in the measurement data, and the data is for your reference only.

© 2024 DJI All Rights Reserved. 7

2. Command Code IDs and Regular Link Data
Description
Table 2-1 Overview of command code IDs

Command

Code

Data Segment

Length
Description Sender/Receiver Data Link

0x0001 11

Competition status data,

transmitted at a fixed frequency of

1 Hz.

Server→All robots Regular link

0x0002 1

Competition result data,

transmitted upon completion of the

competition.

Server→All robots Regular link

0x0003 32
Robot health data, transmitted at a

fixed frequency of 3 Hz.
Server→All robots Regular link

0x0101 4
Site event data, transmitted at a

fixed frequency of 1 Hz.

Server→All robots of

the own side
Regular link

0x0102 4

Action identifier data of the

Official Projectile Supplier,

transmitted when the Official

Projectile Supplier releases

projectiles.

Server→All robots of

the own side
Regular link

0x0104 3

Referee warning data, transmitted

when one's team is issued a

penalty/forfeiture and at a fixed

frequency of 1 Hz in other cases.

Server→All robots of

the penalized team
Regular link

0x0105 3
Dart launching data, transmitted at

a fixed frequency of 1 Hz.

Server→All robots of

the own side
Regular link

0x0201 13

Robot performance system data,

transmitted at a fixed frequency of

10 Hz.

Main Controller

Module→Corresponding

robot

Regular link

8 © 2024 DJI All Rights Reserved.

Command

Code

Data Segment

Length
Description Sender/Receiver Data Link

0x0202 16

Real-time chassis power and barrel

heat data, transmitted at a fixed

frequency of 50 Hz.

Main Controller

Module→Corresponding

robot

Regular link

0x0203 16
Robot position data, transmitted at

a fixed frequency of 1 Hz.

Main Controller

Module→Corresponding

robot

Regular link

0x0204 6
Robot buff data, transmitted at a

fixed frequency of 3 Hz.

Server→Corresponding

robot
Regular link

0x0205 2
Air support time data, transmitted

at a fixed frequency of 1 Hz.

Server→Own side's

Aerial Robots
Regular link

0x0206 1
Damage status data, transmitted

after the damage occurs.

Main Controller

Module→Corresponding

robot

Regular link

0x0207 7

Real-time launching data,

transmitted after a projectile is

launched.

Main Controller

Module→Corresponding

robot

Regular link

0x0208 6
Projectile allowance, transmitted at

a fixed frequency of 10 Hz.

Server→Own side's

Hero, Standard, Sentry,

and Aerial Robots

Regular link

0x0209 4

Robot RFID module status,

transmitted at a fixed frequency of

3 Hz.

Server→Own side's

robots with an RFID

module

Regular link

0x020A 6

Dart player's client command data,

transmitted at a fixed frequency of

3 Hz.

Server→Own side's Dart

Robots
Regular link

© 2024 DJI All Rights Reserved. 9

Command

Code

Data Segment

Length
Description Sender/Receiver Data Link

0x020B 40

Ground Robot position data,

transmitted at a fixed frequency of

1 Hz.

Server→Own side's

Sentry Robots
Regular link

0x020C 6

Radar-marked progress data,

transmitted at a fixed frequency of

1 Hz.

Server→Own side's

Radar Robots
Regular link

0x020D 4

Decision-making data of Sentry

Robot, transmitted at a fixed

frequency of 1 Hz.

Server→Own side's

Sentry Robots
Regular link

0x020E 1

Decision-making data of Radar,

transmitted at a fixed frequency of

1 Hz.

Server→Own side's

Radar Robots
Regular link

0x0301 128

Robot interaction data, transmitted

at a maximum frequency of 10 Hz

when triggered by the sender.

- Regular link

0x0302 30

Data about the interaction between

the Custom Controller and robots,

transmitted at a maximum

frequency of 30 Hz when triggered

by the sender.

Custom

Controller→Robots with

VTM links to player

clients

VTM link

0x0303 15

Player client's small map

interaction data, transmitted when

triggered by the player client.

Tap the player

client→Server→Own

side's robots selected by

the sender

Regular link

0x0304 12

Keyboard, mouse, and remote

control data, transmitted at a fixed

frequency of 30 Hz.

Player client→Robots

with VTM links to

player clients

VTM link

10 © 2024 DJI All Rights Reserved.

Command

Code

Data Segment

Length
Description Sender/Receiver Data Link

0x0305 10

Radar data received by player

clients' Small Maps, transmitted at

a maximum frequency of 10 Hz.

Radar→Server→All

player clients of the own

side

Regular link

0x0306 8

Data about the interaction between

the Custom Controller and player

clients, transmitted at a maximum

frequency of 30 Hz when triggered

by the sender.

Custom

Controller→Player

client

-

0x0307 103

Sentry data received by player

clients' Small Maps, transmitted at

a maximum frequency of 1 Hz.

Sentry/Semiautomatic

Control Robot→Player

client of the

corresponding operator

Regular link

0x0308 34

Robot data received by player

clients' Small Map, transmitted at a

maximum frequency of 3 Hz.

Own side's

robots→Own side's

player clients

Regular link

Table 2-2 0x0001

Byte Offset Size Description

0 1

Bits 0-3: competition type

• 1: RoboMaster University Championship (RMUC)

• 2: RoboMaster University Technical Challenge (RMUT)

• 3: ICRA RoboMaster University AI Challenge (RMUA)

• 4: RoboMaster University League (RMUL) 3V3 Match

• 5: RoboMaster University League (RMUL) Standard Match

Bits 4-7: current stage

• 0: pre-competition stage

• 1: preparation stage

© 2024 DJI All Rights Reserved. 11

Byte Offset Size Description

• 2: 15-second Referee System initialization period

• 3: 5-second countdown

• 4: in competition

• 5: competition result calculation

1 2 Remaining time in the current round; unit: second.

3 8
UNIX time, effective after the robot is correctly connected to the Referee System's

NTP server

typedef _packed struct
{
 uint8_t game_type : 4;
 uint8_t game_progress : 4;
 uint16_t stage_remain_time;
 uint64_t SyncTimeStamp;
}game_status_t;
Table 2-3 0x0002

Byte Offset Size Description

0 1

 0: Draw

 1: Red team wins

 2: Blue team wins

typedef _packed struct
{
 uint8_t winner;
}game_result_t;
Table 2-4 0x0003

Byte Offset Size Description

0 2
HP of Red 1 Hero Robot. If the robot has not entered the stage or has been ejected,

the HP is zero.

2 2 HP of Red 2 Engineer Robot.

4 2 HP of Red 3 Standard Robot.

6 2 HP of Red 4 Standard Robot.

12 © 2024 DJI All Rights Reserved.

Byte Offset Size Description

8 2 HP of Red 5 Standard Robot.

10 2 HP of Red 7 Sentry Robot.

12 2 HP of Red Outpost.

14 2 HP of Red Base.

16 2 HP of Blue 1 Hero Robot.

18 2 HP of Blue 2 Engineer Robot.

20 2 HP of Blue 3 Standard Robot.

22 2 HP of Blue 4 Standard Robot.

24 2 HP of Blue 5 Standard Robot.

26 2 HP of Blue 7 Sentry Robot.

28 2 HP of Blue Outpost.

30 2 HP of Blue Base.

typedef _packed struct
{
 uint16_t red_1_robot_HP;
 uint16_t red_2_robot_HP;
 uint16_t red_3_robot_HP;
 uint16_t red_4_robot_HP;
 uint16_t red_5_robot_HP;
 uint16_t red_7_robot_HP;
 uint16_t red_outpost_HP;
 uint16_t red_base_HP;
 uint16_t blue_1_robot_HP;
 uint16_t blue_2_robot_HP;
 uint16_t blue_3_robot_HP;
 uint16_t blue_4_robot_HP;
 uint16_t blue_5_robot_HP;
 uint16_t blue_7_robot_HP;
 uint16_t blue_outpost_HP;
 uint16_t blue _base_HP;
}game_robot_HP_t;

© 2024 DJI All Rights Reserved. 13

Table 2-5 0x0101

Byte Offset Size Description

0 4

0: non-occupied/non-activated

1: occupied/activated

Bits 0-2:

 Bit 0: occupation status of the Restoration Zone in front of the own side's

Official Projectile Supplier; a value of 1 indicates that it is occupied.

 Bit 1: occupation status of the Restoration Zone inside the own side's Official

Projectile Supplier; a value of 1 indicates that it is occupied.

 Bit 2: occupation status of the own side's Supplier Zone; a value of 1 indicates

that it is occupied, which applies only to RMUL.

Bits 3-5: status of the own side's Power Rune

 Bit 3: occupation status of the own side's Power Rune Activation Point; a

value of 1 indicates that it is occupied.

 Bit 4: activation status of the own side's Small Power Rune; a value of 1

indicates that it is activated.

 Bit 5: activation status of the own side's Large Power Rune; a value of 1

indicates that it is activated.

Bits 6-11: occupation status of the own side's Elevated Ground

 Bits 6-7: occupation status of the own side's Ring-Shaped Elevated Ground; a

value of 1 indicates that it is occupied by the own side; a value of 2 indicates

that it is occupied by the opponent.

 Bits 8-9: occupation status of the own side's Trapezoid-Shaped Elevated

Ground; a value of 1 indicates that it is occupied by the own side; a value of

2 indicates that it is occupied by the opponent.

 Bits 10-11: occupation status of the own side's Trapezoid-Shaped Elevated

Ground; a value of 1 indicates that it is occupied by the own side; a value of

2 indicates that it is occupied by the opponent.

Bits 12-18: percentage of the remaining value of the own Base's Virtual Shield

(rounded to the nearest integer)

14 © 2024 DJI All Rights Reserved.

Byte Offset Size Description

Bits 19-27: time when the own side's Outpost or Base was last hit by darts (valid

values: 0 to 420; default value at the start of a round: 0)

Bits 28-29: specific target that was hit when the own side's Outpost or Base was

last hit by darts. The default value at the start of a round is 0, a value of 1 indicates

that the dart hits the Outpost, a value of 2 indicates that the dart hits a fixed target

in the Base, and a value of 3 indicates that the dart hits a random target in the Base.

Bits 30-31: occupation status of the Central Buff Point; a value of 0 indicates that

it is not occupied; a value of 1 indicates that it is occupied by the own side; a value

of 2 indicates that it is occupied by the opponent; a value of 3 indicates that it is

occupied by both sides, which applies only to RMUL

typedef _packed struct
{
 uint32_t event_data;
}event_data_t;
Table 2-6 0x0102

Byte Offset Size Description

0 1 Reserved bit

1 1

Reloading robot ID.

 0: No robot is reloading projectiles.

 1: The Hero Robot of the Red Team is reloading projectiles.

 3/4/5: The Standard Robot of the Red Team is reloading projectiles.

 101: The Hero Robot of the Blue Team is reloading projectiles.

 103/104/105: The Standard Robot of the Blue Team is reloading projectiles.

2 1

Status of the projectile outlet.

 0: closed

 1: preparing projectiles

 2: releasing projectiles

3 1 Number of supplied projectiles.

© 2024 DJI All Rights Reserved. 15

Byte Offset Size Description

 50: 50 projectiles

 100: 100 projectiles

 150: 150 projectiles

 200: 200 projectiles

typedef _packed struct
{
 uint8_t reserved;
 uint8_t supply_robot_id;
 uint8_t supply_projectile_step;
 uint8_t supply_projectile_num;
} ext_supply_projectile_action_t;
Table 2-7 0x0104

Byte Offset Size Description

0 1

Level of penalty that was last received by the own side.

 1: Both teams received a Yellow Card.

 2: Yellow Card

 3: Red Card

 4: Forfeiture

1 1

 ID of the own side's offending robot that received the last penalty. (For

example, Red 1 Robot's ID is 1, and Blue 1 Robot's ID is 101.)

 In the case of a forfeiture or where both teams have been issued a Yellow

Card, the value is 0.

2 1

Number of violations (at the corresponding penalty level) triggered by the own

side's offending robot that received the last penalty. (The default value at the start

of a round is 0.)

typedef _packed struct
{
 uint8_t level;
 uint8_t offending_robot_id;
 uint8_t count;
}referee_warning_t;

16 © 2024 DJI All Rights Reserved.

Table 2-8 0x0105

Byte Offset Size Description

0 1 Own side's remaining time for dart launching; unit: second.

1 2

Bits 0-1:

Target that was last hit by a dart of the own side. The default value at the start of a

round is 0, a value of 1 indicates that the dart hits the Outpost, a value of 2

indicates that the dart hits a fixed target in the Base, and a value of 3 indicates that

the dart hits a random target in the Base.

Bits 2-4:

Total number of recent hits to a target in the opponent team. The default value at

the start of a round is 0, and the maximum value is 4.

Bits 5-6:

Target currently selected to be hit by the dart. The default value at the start of a

round is 0. When no hit target is selected or the Outpost is selected, the value is

also 0. A value of 1 indicates that a fixed target in the Base is selected, and a

value of 2 indicates that a random target in the Base is selected.

Bits 7-15: Reserved bits

typedef _packed struct
{
 uint8_t dart_remaining_time;
 uint16_t dart_info;
}dart_info_t;
Table 2-9 0x0201

Byte Offset Size Description

0 1 Current robot ID.

1 1 Robot level.

2 2 Robot's current HP.

4 2 Robot's maximum HP.

6 2 Robot's barrel cooling value per second.

© 2024 DJI All Rights Reserved. 17

Byte Offset Size Description

8 2 Robot's barrel heat limit.

10 2 Robot's chassis power consumption limit.

12 1

Output status of the Power Management Module.

 Bit 0: output from the gimbal port. A value of 0 indicates zero output, and a

value of 1 indicates 24 V output.

 Bit 1: output from the chassis port. A value of 0 indicates zero output, and a

value of 1 indicates 24 V output.

 Bit 2: output from the shooter port. A value of 0 indicates zero output, and a

value of 1 indicates 24 V output.

 Bits 3-7: Reserved bits

typedef _packed struct
{
 uint8_t robot_id;
 uint8_t robot_level;
 uint16_t current_HP;
 uint16_t maximum_HP;
 uint16_t shooter_barrel_cooling_value;
 uint16_t shooter_barrel_heat_limit;
 uint16_t chassis_power_limit;
 uint8_t power_management_gimbal_output : 1;
 uint8_t power_management_chassis_output : 1;
 uint8_t power_management_shooter_output : 1;
}robot_status_t;
Table 2-10 0x0202

Byte Offset Size Description

0 2 Output voltage of the chassis port in the Power Management Module; unit: mV.

2 2 Output current of the chassis port in the Power Management Module; unit: mA.

4 4 Chassis power; unit: W.

8 2 Buffer energy; unit: J.

10 2 Barrel heat of the 1st 17mm Launching Mechanism.

12 2 Barrel heat of the 2nd 17mm Launching Mechanism.

18 © 2024 DJI All Rights Reserved.

typedef _packed struct
{
 uint16_t chassis_voltage;
 uint16_t chassis_current;
 float chassis_power;
 uint16_t buffer_energy;
 uint16_t shooter_17mm_1_barrel_heat;
 uint16_t shooter_17mm_2_barrel_heat;
 uint16_t shooter_42mm_barrel_heat;
}power_heat_data_t;
Table 2-11 0x0203

Byte Offset Size Description

0 4 The x-coordinate of the robot's position; unit: m.

4 4 The y-coordinate of the robot's position; unit: m.

8 4
Direction of the robot's Speed Monitor Module; unit: degree. True north is 0

degrees.

typedef _packed struct
{
 float x;
 float y;
 float angle;
}robot_pos_t;
Table 2-12 0x0204

Byte Offset Size Description

0 1
Robot's HP recovery buff (in percentage; a value of 10 indicates that HP recovery

per second is 10% of the maximum HP.)

1 1
Robot's barrel cooling rate (in absolute value; a value of 5 indicates a cooling rate

of 5 times.)

2 1 Robot's defense buff (in percentage; a value of 50 indicates a defense buff of 50%.)

3 1
Robot's negative defense buff (in percentage; a value of 30 indicates a defense buff

of -30%.)

4 2 Robot's attack buff (in percentage; a value of 50 indicates an attack buff of 50%.)

14 2 Barrel heat of the 42mm Launching Mechanism.

© 2024 DJI All Rights Reserved. 19

typedef _packed struct
{
 uint8_t recovery_buff;
 uint8_t cooling_buff;
 uint8_t defence_buff;
 uint8_t vulnerability_buff;
 uint16_t attack_buff;
}buff_t;
Table 2-13 0x0205

Byte Offset Size Description

0 1

Aerial Robot's status (a value of 0 indicates that it is cooling, a value of 1

indicates that cooling is completed, and a value of 2 indicates that air support is

ongoing.)

1 1

Remaining time of the current status (unit: s; the value is rounded down to the

nearest integer. For example, if the remaining cooling time is 1.9 s, the value is

rounded down to 1.)

If the cooling time is 0 but no air support is called for, the value is 0.

typedef _packed struct
{
 uint8_t airforce_status;
 uint8_t time_remain;
}air_support_data_t;
Table 2-14 0x0206

Byte Offset Size Description

0 1

Bits 0-3: If HP deduction is caused because an Armor Module is attacked by

projectiles, hit in a collision, or goes offline, or a Speed Monitor Module goes

offline, the 4-bit value indicates the ID of the Armor Module or Speed Monitor

Module. If HP deduction is caused by other reasons, the value is 0.

Bits 4-7: type of an HP change.

 0: HP deduction is caused because an Armor Module is attacked by

projectiles.

 1: HP deduction is caused because the Critical Referee System Module goes

offline.

 2: HP deduction is caused because the Initial Launching Speed exceeds the

upper limit.

20 © 2024 DJI All Rights Reserved.

Byte Offset Size Description

 3: HP deduction is caused because the Barrel Heat exceeds the upper limit.

 4: HP deduction is caused because the Chassis Power Consumption Limit is

exceeded.

 5: HP deduction is caused because the Armor Module suffers a collision.

typedef _packed struct
{
 uint8_t armor_id : 4;
 uint8_t HP_deduction_reason : 4;
}hurt_data_t;
Table 2-15 0x0207

Byte Offset Size Description

0 1

Projectile type.

 1: 17mm projectile

 2: 42mm projectile

1 1

Launching mechanism ID.

 1: First 17mm launching mechanism

 2: Second 17mm launching mechanism

 3: 42mm launching mechanism

2 1 Projectile launching frequency; unit: Hz.

3 4 Initial projectile speed; unit: m/s.

typedef _packed struct
{
 uint8_t bullet_type;
 uint8_t shooter_number;
 uint8_t launching_frequency;
 float initial_speed;
}shoot_data_t;
Table 2-16 0x0208

Byte Offset Size Description

0 2 17mm projectile allowance.

© 2024 DJI All Rights Reserved. 21

Byte Offset Size Description

2 2 42mm projectile allowance.

4 2 Number of remaining Gold Coins.

typedef _packed struct
{
 uint16_t projectile_allowance_17mm;
 uint16_t projectile_allowance_42mm;
 uint16_t remaining_gold_coin;
}projectile_allowance_t;
Table 2-17 0x0209

Byte Offset Size Description

0 4

Meaning of bit value 0 or 1: whether the Buff Point's RFID card is detected.

 Bit 0: own side's Base Buff Point

 Bit 1: own side's Ring-Shaped Elevated Ground Buff Point

 Bit 2: opponent's Ring-Shaped Elevated Ground Buff Point

 Bit 3: own side's R3/B3 Trapezoid-Shaped Elevated Ground Buff Point

 Bit 4: opponent's R3/B3 Trapezoid-Shaped Elevated Ground Buff Point

 Bit 5: own side's R4/B4 Trapezoid-Shaped Elevated Ground Buff Point

 Bit 6: opponent's R4/B4 Trapezoid-Shaped Elevated Ground Buff Point

 Bit 7: own side's Power Rune Activation Point

 Bit 8: own side's Launch Ramp Buff Point (in front of the Launch Ramp near

own side)

 Bit 9: own side's Launch Ramp Buff Point (behind the Launch Ramp near

own side)

 Bit 10: opponent's Launch Ramp Buff Point (in front of the Launch Ramp

near the other side)

 Bit 11: opponent's Launch Ramp Buff Point (behind the Launch Ramp near

the other side)

 Bit 12: own side's Outpost Buff Point

 Bit 13: own side's Restoration Zone (deemed activated if anyone is detected)

22 © 2024 DJI All Rights Reserved.

Byte Offset Size Description

 Bit 14: own side's Sentry Patrol Zones

 Bit 15: opponent's Sentry Patrol Zones

 Bit 16: own side's Large Resource Island Buff Point

 Bit 17: opponent's Large Resource Island Buff Point

 Bit 18: own side's Exchange Zone

 Bit 19: Central Buff Point (for RMUL only)

 Bits 20-31: Reserved bits

Note: The RFID card of the Base Buff Point, Elevated Ground Buff Point, Launch

Ramp Buff Point, Outpost Buff Point, Resource Island Buff Point, Restoration

Zone, Exchange Zones, Central Buff Point (for RMUL only), and Sentry Patrol

Zones are effective only during the competition. If an RFID card is detected outside

the competition, the corresponding value remains 0.

typedef _packed struct
{
 uint32_t rfid_status;
}rfid_status_t;
Table 2-18 0x020A

Byte Offset Size Description

0 1

Current status of the Dart Launching Station.

 1: closed

 2: opening or closing

 0: opened

1 1 Reserved bits

2 2
Remaining competition time when the attack target is changed. Unit: s. If no target

change occurs, the value is 0 by default.

4 2
Remaining competition time when the Operator confirms the launch command for

the last time. Unit: s. Initial value: 0.

typedef _packed struct
{

© 2024 DJI All Rights Reserved. 23

 uint8_t dart_launch_opening_status;
 uint8_t reserved;
 uint16_t target_change_time;
 uint16_t latest_launch_cmd_time;
}dart_client_cmd_t;

Table 2-19 0x020B

The intersection of the site perimeter wall near the Red Team's Official Projectile Supplier is the origin;
the orientation of the site's longer edge facing the Blue Team is the positive x-axis direction, while the
orientation of the site's shorter edge facing the Red Team's Landing Pad is the positive y-axis direction.

Byte Offset Size Description

0 4 The x-axis coordinate of the own side's Hero Robot; unit: m.

4 4 The y-axis coordinate of the own side's Hero Robot; unit: m.

8 4 The x-axis coordinate of the own side's Engineer Robot; unit: m.

12 4 The y-axis coordinate of the own side's Engineer Robot; unit: m.

16 4 The x-axis coordinate of the own side's Standard Robot No. 3; unit: m.

20 4 The y-axis coordinate of the own side's Standard Robot No. 3; unit: m.

24 4 The x-axis coordinate of the own side's Standard Robot No. 4; unit: m.

28 4 The y-axis coordinate of the own side's Standard Robot No. 4; unit: m.

32 4 The x-axis coordinate of the own side's Standard Robot No. 5; unit: m.

36 4 The y-axis coordinate of the own side's Standard Robot No. 5; unit: m.

typedef _packed struct
{
 float hero_x;
 float hero_y;
 float engineer_x;
 float engineer_y;
 float standard_3_x;
 float standard_3_y;
 float standard_4_x;
 float standard_4_y;

24 © 2024 DJI All Rights Reserved.

 float standard_5_x;
 float standard_5_y;
}ground_robot_position_t;
Table 2-20 0x020C

Byte Offset Size Description

0 1 Marked progress of the opponent's Hero Robot. 0-120

1 1 Marked progress of the opponent's Engineer Robot. 0-120

2 1 Marked progress of the opponent's Standard Robot No. 3. 0-120

3 1 Marked progress of the opponent's Standard Robot No. 4. 0-120

4 1 Marked progress of the opponent's Standard Robot No. 5. 0-120

5 1 Marked progress of the opponent's Sentry Robot. 0-120

typedef _packed struct
{
 uint8_t mark_hero_progress;
 uint8_t mark_engineer_progress;
 uint8_t mark_standard_3_progress;
 uint8_t mark_standard_4_progress;
 uint8_t mark_standard_5_progress;
 uint8_t mark_sentry_progress;
}radar_mark_data_t;
Table 2-21 0x020D

Byte Offset Size Description

0 4

Bits 0-10: the projectile allowance successfully exchanged by a Sentry Robot,

excluding the projectile exchanged through remote exchange. The value at the start

of a round is 0. After the Sentry Robot successfully exchanges for a specific amount

of projectile allowance, the value changes to the exchanged projectile allowance.

Bits 11-14: the number of a Sentry Robot's successful remote exchanges for

projectile allowance. The value at the start of a round is 0. After the Sentry Robot

successfully exchanges for projectile allowance remotely, the value changes to the

number of successful remote exchanges for projectile allowance.

Bits 15-18: the number of a Sentry Robot's successful remote HP exchanges. The

value at the start of a round is 0. After the Sentry Robot successfully exchanges for

HP remotely, the value changes to the number of successful remote HP exchanges.

© 2024 DJI All Rights Reserved. 25

Byte Offset Size Description

Bits 19-31: Reserved bits

typedef _packed struct
{
 uint32_t sentry_info;
} sentry_info_t;

Table 2-22 0x020E

Byte Offset Size Description

0 1

Bits 0-1: the number of chances for the Radar to trigger the "double vulnerability"

effect. The value at the start of a round is 0. Maximum value: 2.

Bit 2: whether the "double vulnerability" effect is being triggered for the opponent.

 A value of 0 indicates that the "double vulnerability" effect is not triggered

for the opponent.

 A value of 1 indicates that the "double vulnerability" effect is being triggered

for the opponent.

Bits 3-7: Reserved bits

typedef _packed struct
{
 uint8_t radar_info;
} radar_info_t;

The robot interaction data is transmitted through regular links. Its data segments include a unified data segment

header structure. A data segment header structure consists of the content ID, sender ID, receiver ID, and content

data segment. The total length of a robot interaction data packet cannot exceed 128 bytes. After the nine bytes for

frame_header, cmd_id, and frame_tail, and the six bytes for the data segment header structure are deducted, the

maximum length of a content data segment in a robot interaction data packet is 113 bytes.

The maximum length of data that can be received by a Hero, Engineer, Standard, or Aerial Robot or Dart every

1000 ms is 3720 bytes, while the maximum length of data that can be received by a Radar or a Sentry Robot every

1000 ms is 5120 bytes.

Table 2-23 0x0301

Byte Offset Size Description Remarks

0 2 Sub-content ID It needs to be an open sub-content ID.

26 © 2024 DJI All Rights Reserved.

Byte Offset Size Description Remarks

2 2 Sender ID
It needs to be matched with one's own ID. For more

information about the IDs, see the appendix.

4 2 Receiver ID.

 It is used for communication only within one's own

team.

 The receiver must be an inter-robot communication

receiver permitted by the rules.

 If the receiver is a player client, the data can be

transmitted only to the player client corresponding to the

sender.

 For more information about the IDs, see the appendix.

6 x
Content data

segment.
The maximum value of x is 113.

typedef _packed struct
{
 uint16_t data_cmd_id;
 uint16_t sender_id;
 uint16_t receiver_id;
 uint8_t user_data[x];
}robot_interaction_data_t;

Sub-content ID Content Data Segment Length Function Description

0x0200 - 0x02FF x ≤ 113 Inter-robot communication

0x0100 2
A player client deletes graphic

layers.

0x0101 15 A player client draws one graphic.

0x0102 30 A player client draws two graphics.

0x0103 75 A player client draws five graphics.

0x0104 105
A player client draws seven

graphics.

© 2024 DJI All Rights Reserved. 27

Sub-content ID Content Data Segment Length Function Description

0x0110 45
A player client draws a character

graphic.

0x0120 4
Decision-making command of a

Sentry Robot.

0x0121 1
Decision-making command of a

Radar.

Make sure that the bandwidth is properly configured because there are multiple content IDs but the maximum uplink

frequency of the entire cmd_id is 10 Hz.

Table 2-24 Sub-content ID: 0x0100

Byte Offset Size Description Remarks

0 1
Delete

operation.

 0: No operation is performed.

 1: Delete a graphic layer.

 2: Delete all graphic layers.

1 1
Number of

graphic layers.
Number of graphic layers: 0 - 9.

typedef _packed struct
{

uint8_t delete_type;
uint8_t layer;

}interaction_layer_delete_t;
Table 2-25 Sub-content ID: 0x0101

Byte Offset Size Description Remarks

0 3 Graphic name Used as an index in graphic deletion, revision, and other operations.

3 4
Graphic

configuration 1

Bits 0-2: graphic operation

 0: No operation is performed.

 1. Add

 2: Modify

28 © 2024 DJI All Rights Reserved.

Byte Offset Size Description Remarks

 3: Delete

Bits 3-5: graphic type

 0: straight line

 1: rectangle

 2: circle

 3: ellipse

 4: arc

 5: floating number

 6: integer

 7: character

Bits 6-9: number of graphic layers (valid values: 0 to 9)

Bits 10-13: color

 0: Red/Blue (Own side's color)

 1: yellow

 2: green

 3: orange

 4: purplish red

 5: pink

 6: cyan

 7: black

 8: white

Bits 14-31: The meaning differs based on the drawn graphics, as described

in Table 2-26 Graphic detail parameters.

7 4
Graphic

configuration 2

Bits 0-9: line width. The recommended ratio between font size and line

width is 10:1.

Bits 10-20: start point/origin's x-coordinate.

© 2024 DJI All Rights Reserved. 29

Byte Offset Size Description Remarks

Bits 21-31: start point/origin's y-coordinate.

11 4
Graphic

configuration 3

The meaning differs based on the drawn graphics, as described in Table

2-26 Graphic detail parameters.

typedef _packed struct
{

uint8_t figure_name[3];
uint32_t operate_tpye:3;
uint32_t figure_tpye:3;
uint32_t layer:4;
uint32_t color:4;
uint32_t details_a:9;
uint32_t details_b:9;
uint32_t width:10;
uint32_t start_x:11;
uint32_t start_y:11;
uint32_t details_c:10;
uint32_t details_d:11;
uint32_t details_e:11;

}interaction_figure_t;
Table 2-26 Graphic detail parameters

Type details_a details_b details_c details_d details_e

Straight

line
- - -

x-coordinate of

the end point

y-coordinate of the

end point

Rectangl

e
- - -

x-coordinate of

the diagonal

vertex

y-coordinate of the

diagonal vertex

Circle - - Radius - -

Ellipse - - -
Length of the x

axis
Length of the y axis

30 © 2024 DJI All Rights Reserved.

Type details_a details_b details_c details_d details_e

Arc Start angle End angle -
Length of the x

axis
Length of the y axis

Floating

number
Font size No effect

Divide the value by 1000 to obtain the actual displayed

value.

Integer Font size - 32-bit integer, int32_t

Character Font size Character length - - -

 Meaning of angle value: 0° points at 12 o'clock, drawn in the clockwise direction.

 Screen position: (0,0) is at the lower left corner of the screen, while (1920,1080) is at the upper

right corner.

 Floating number: All integers are 32-bit. For a floating number, the actual displayed value is

1/1000 of the entered value. For example, if the value entered corresponding to details_c,

details_d, and details_e is 1234, the actual value displayed on the player's client will be 1.234.

 The graphics may still appear even if the transmitted value exceeds the upper limit of the

corresponding data type, but the display quality may be compromised.

Table 2-27 Sub-content ID: 0x0102

Byte Offset Size Description Remarks

0 15 Graphic 1 Same as the 0x0101 data segment.

15 15 Graphic 2 Same as the 0x0101 data segment.

typedef _packed struct
{
 interaction_figure_t interaction_figure[2];
}interaction_figure_2_t;

© 2024 DJI All Rights Reserved. 31

Table 2-28 Sub-content ID: 0x0103

Byte Offset Size Description Remarks

0 15 Graphic 1 Same as the 0x0101 data segment.

15 15 Graphic 2 Same as the 0x0101 data segment.

30 15 Graphic 3 Same as the 0x0101 data segment.

45 15 Graphic 4 Same as the 0x0101 data segment.

60 15 Graphic 5 Same as the 0x0101 data segment.

typedef _packed struct
{

interaction_figure_t interaction_figure[5];
}interaction_figure_3_t;
Table 2-29 Sub-content ID: 0x0104

Byte Offset Size Description Remarks

0 15 Graphic 1 Same as the 0x0101 data segment.

15 15 Graphic 2 Same as the 0x0101 data segment.

30 15 Graphic 3 Same as the 0x0101 data segment.

45 15 Graphic 4 Same as the 0x0101 data segment.

60 15 Graphic 5 Same as the 0x0101 data segment.

75 15 Graphic 6 Same as the 0x0101 data segment.

90 15 Graphic 7 Same as the 0x0101 data segment.

typedef _packed struct
{

interaction_figure_t interaction_figure[7];
}interaction_figure_4_t;

32 © 2024 DJI All Rights Reserved.

Table 2-30 Sub-content ID: 0x0110

Byte Offset Size Description Remarks

0 2 Data content ID 0x0110

2 2 Sender ID The sender ID needs to be verified.

4 2 Receiver ID
The receiver ID needs to be verified. Data can be sent only to a

player client corresponding to the robot.

6 15
Character

configuration
For more information, see the graphic data introduction.

21 30 Character -

typedef _packed struct
{

graphic_data_struct_t grapic_data_struct;
uint8_t data[30];

} ext_client_custom_character_t;
Table 2-31 Decision-making command of a Sentry: 0x0120

Byte Offset Size Description Remarks

0 4

Relevant decision-

making commands

of a Sentry Robot.

Bit 0: whether the Sentry Robot confirms to revive.

 A value of 0 indicates that the Sentry Robot confirms not to

revive, even though the Respawn Process of the Sentry Robot

is completed.

 A value of 1 indicates that the Sentry Robot confirms to

revive. The Sentry Robot revives immediately after the

Respawn Process is completed.

Bit 1: whether the Sentry Robot confirms to exchange for Instant

Respawn.

 A value of 0 indicates that the Sentry Robot confirms not to

exchange for Instant Respawn.

© 2024 DJI All Rights Reserved. 33

Byte Offset Size Description Remarks

 A value of 1 indicates that the Sentry Robot confirms to

exchange for Instant Respawn. In this case, if the Sentry Robot

meets the requirements for Instant Respawn, Gold Coins are

immediately consumed for Instant Respawn.

Bits 2-12: the projectile allowance to be obtained by a Sentry Robot

through exchange. The value at the start of a round is 0. After the

value is changed, the Sentry Robot can exchange Gold Coins for

projectile allowance in the Restoration Zone.

The value must be monotonically increased. Otherwise, the value is

considered invalid.

Example: The value must be set to 0 at the start of a round. Then,
the Sentry Robot can change the value from 0 to X, and a number
of X Gold Coins are consumed for exchanging X projectile
allowance. Subsequently, the Sentry Robot can change the value
from X to X+Y. The rest can be deduced by analogy.

Bits 13-16: the number of requests sent by a Sentry Robot to obtain

projectile allowance through remote exchange. A value at the start

of a round is 0. After the value is changed, the Sentry Robot can

request to remotely exchange Gold Coins for projectile allowance.

The value must be monotonically increased by 1 at a time.

Otherwise, the value is considered invalid.

Example: The value must be set to 0 at the start of a round. Then,
the Sentry Robot can change the value from 0 to 1, and Gold
Coins are consumed for remotely exchanging for projectile
allowance. Subsequently, the Sentry Robot can change the value
from 1 to 2. The rest can be deduced by analogy.

Bits 17-20: the number of requests sent by a Sentry Robot to obtain

HP through remote exchange. A value at the start of a round is 0.

After the value is changed, the Sentry Robot can request to remotely

exchange Gold Coins for HP.

The value must be monotonically increased by 1 at a time.

Otherwise, the value is considered invalid.

Example: The value must be set to 0 at the start of a round. Then,
the Sentry Robot can change the value from 0 to 1, and Gold
Coins are consumed for remotely exchanging for HP.
Subsequently, the Sentry Robot can change the value from 1 to
2. The rest can be deduced by analogy.

34 © 2024 DJI All Rights Reserved.

Byte Offset Size Description Remarks

When the Sentry Robot sends these sub-commands, the server

processes the sub-commands in sequence from lower bits to higher

bits until all sub-commands are processed or no processing can be

performed.

Example: The number of Gold Coins in the team is 0, and the
Sentry Robot is defeated at this time. The value of bit 0 is 1, the
value of bit 1 is 1, and the value of bits 2 to 12 is 100 (assuming
that the Sentry Robot has not exchanged for projectile allowance
before). In this case, the number of Gold Coins in the team is not
enough for the Sentry Robot to exchange for Instant Respawn.
Therefore, the server ignores subsequent commands and waits
for the next group of commands from the Sentry Robot.

Bits 21-31: Reserved bits

typedef _packed struct
{
 uint32_t sentry_cmd;
} sentry_cmd_t;
Table 2-32 Decision-making command of a Radar: 0x0121

Byte Offset Size Description Remarks

0 1

Whether the Radar

confirms to trigger

the "double

vulnerability" effect.

The value at the start of a round is 0. The value can be changed for

the Radar to request triggering the "double vulnerability" effect. If

the Radar has a chance to trigger the "double vulnerability" effect,

the effect is triggered.

The value must be monotonically increased by 1 at a time.

Otherwise, the value is considered invalid.

Example: The value at the start of a round is 0. Then, the Radar
can change the value from 0 to 1. If the Radar has a chance to
trigger the "double vulnerability" effect, the effect is triggered.
Subsequently, the Radar can change the value from 1 to 2. The
rest can be deduced by analogy.

If the "double vulnerability" effect is in effect when the Radar

requests to trigger the effect, the effect requested for the second

time is triggered after the effect requested for the first time elapses.

typedef _packed struct
{
 uint8_t radar_cmd;
} radar_cmd_t;

© 2024 DJI All Rights Reserved. 35

3. Small Map Interaction Data

3.1 Data Transmission by Player Clients
 An Aerial Gimbal Operator can send fixed data to robots through a player client's big map.

The command code is 0x0303, which is transmitted when triggered, at an interval of at least 0.5 seconds.

Transmission method 1:

① Tap the avatar of an own side's robot.

② (Optional) Press a keyboard key or tap an opponent robot's avatar.

③ Tap any location on the Small Map. Through this method, map coordinate data is sent to robots selected by

your own team. If an opponent robot's avatar is tapped, the target robot ID will replace the coordinate data.

Transmission method 2:

① (Optional) Press a keyboard key or tap an opponent robot's avatar.

② Tap any location on the Small Map. Through this method, map coordinate data is sent to all robots of your

own team. If an opponent robot's avatar is tapped, the target robot ID will replace the coordinate data.

 An operator of a robot that uses the semiautomatic control method can send fixed data to robots through a

player client's big map.

The command code is 0x0303; transmitted when triggered, at an interval of at least 3 seconds.

Transmission method:

① (Optional) Press a keyboard key or tap an opponent robot's avatar.

② Tap any location on the Small Map. Through this method, map coordinate data is sent to a robot corresponding

to the operator. If an opponent robot's avatar is tapped, the target robot ID will replace the coordinate data.

The robot that chooses to use the semiautomatic control method can receive information sent by the Aerial Gimbal

Operator and the information sent by a corresponding operator. For the differences between the two information

sources, see the description about information sources in the table below.

Table 3-1 Command code ID: 0x0303

Byte Offset Size Description Remarks

0 4
The x-axis coordinate of the target

position; unit: m.

When the target robot ID is sent, the value is

0.

36 © 2024 DJI All Rights Reserved.

Byte Offset Size Description Remarks

4 4
The y-axis coordinate of the target

position; unit: m.

When the target robot ID is sent, the value is

0.

8 1
The generic key value of the key pressed

by the Aerial Gimbal Operator.
When no key is pressed, the value is 0.

9 1 The opponent's robot ID. When coordinate data is sent, the value is 0

10 2 The information source ID.
For more information about the ID

correspondence, see the appendix.

typedef _packed struct
{

float target_position_x;
float target_position_y;
uint8_t cmd_keyboard;
uint8_t target_robot_id;
uint8_t cmd_source;

}map_command_t;

3.2 Data Receiving by Player Clients
A player client's Small Map can receive robot data.

Through regular links, a Radar can send an opponent robot's coordinate data to all of its own side's player clients.

The position will be displayed on the Small Maps of all player clients of its own side.

Table 3-2 Command code ID: 0x0305

Byte Offset Size Description Remarks

0 2 The target robot's ID. -

2 4 Target's x-axis coordinate; unit: m.
Not displayed when x- and y-coordinates

exceed the boundaries.

6 4 Target's y-axis coordinate; unit: m.
Not displayed when x- and y-coordinates

exceed the boundaries.

typedef _packed struct
{

uint16_t target_robot_id;

© 2024 DJI All Rights Reserved. 37

float target_position_x;
float target_position_y;

}map_robot_data_t;

Through regular links, a Sentry Robot or a robot that uses semiautomatic control can send route coordinate data to

the player client of the corresponding operator. The route will be displayed on the Small Map.

Table 3-3 Command code ID: 0x0307

Byte Offset Size Description Remarks

0 1

1: Go to the target point to attack

2: Go to the target point to defend

3: Move to the target point

-

1 2
The x-axis coordinate at the route

starting point, unit: dm.

The lower left corner of the Small Map is the

origin. The horizontal right is the positive x-axis

direction, and the vertical upward is the positive

y-axis direction. The displayed position will zoom

in and out according to the site's and Small Map's

dimensions. Positions exceeding the boundaries

will be displayed on the boundaries.

3 2
The y-axis coordinate at the route

starting point; unit: m.

5 49
The array of x-axis incremental values

of route points; unit: dm.

The incremental values are calculated relative to

the previous point, resulting in 49 new points in

total. The positions of these new points are

determined based on the x- and y-axis incremental

values.
54 49

The array of y-axis incremental values

of route points; unit: dm.

103 2 Sender ID
It needs to be matched with one's own ID. For

more information about the IDs, see the appendix.

typedef _packed struct
{

uint8_t intention;
uint16_t start_position_x;
uint16_t start_position_y;
int8_t delta_x[49];
int8_t delta_y[49];
uint16_t sender_id;

}map_data_t;

38 © 2024 DJI All Rights Reserved.

A robot can send custom messages to any player client of its own side through a regular link. The message is

displayed at a specific position on the player client.

Table 3-4 Command code ID: 0x0308

Byte Offset Size Description Remarks

0 2 Sender ID The sender ID needs to be verified.

2 2 Receiver ID
The receiver ID needs to be verified. Data can be sent only to a

player client of the own side.

4 30 Character

Characters are sent in the UTF-16 encoding format and can be

displayed in Chinese. Pay attention to the endianness of data when

the data is encoded for transmission.

typedef _packed struct
{
uint16_t sender_id;
uint16_t receiver_id;
uint8_t user_data[30];
} custom_info_t;

© 2024 DJI All Rights Reserved. 39

4. VTM Link Data Descriptions

4.1 Custom Controller and Robot Interaction Data
Descriptions
An operator can use a Custom Controller to send data to corresponding robots through VTM links.

Table 4-1 Command code ID: 0x0302

Byte Offset Size Description

0 30 Custom data

typedef _packed struct
{

uint8_t data[x];
}custom_robot_data_t;

4.2 Keyboard-Mouse Remote Control Data
The keyboard and mouse remote control data sent via the remote controller is synchronized to the corresponding

robot through VTM links.

Table 4-2 Command code ID: 0x0304

Byte Offset Size Description

0 2 x-axis moving speed of the mouse. A negative value indicates a left movement.

2 2 y-axis moving speed of the mouse. A negative value indicates a downward movement.

4 2
Scroll wheel's moving speed of the mouse. A negative value indicates a backward

movement.

6 1
Whether the mouse's left button is pressed. A value of 0 indicates that it is not pressed, and

a value of 1 indicates that it is pressed.

7 1
Whether the mouse's right button is pressed. A value of 0 indicates that it is not pressed,

and a value of 1 indicates that it is pressed.

8 2

The keyboard key information. Each bit corresponds to a key. A value of 0 indicates that it

is not pressed, and a value of 1 indicates that it is pressed:

 Bit 0: W key

40 © 2024 DJI All Rights Reserved.

Byte Offset Size Description

 Bit 1: S key

 Bit 2: A key

 Bit 3: D key

 Bit 4: Shift key

 Bit 5: Ctrl key

 Bit 6: Q key

 Bit 7: E key

 Bit 8: R key

 Bit 9: F key

 Bit 10: G key

 Bit 11: Z key

 Bit 12: X key

 Bit 13: C key

 Bit 14: V key

 Bit 15: B key

10 2 Reserved bits

typedef _packed struct
{

int16_t mouse_x;
int16_t mouse_y;
int16_t mouse_z;
int8 left_button_down;
int8 right_button_down;
uint16_t keyboard_value;
uint16_t reserved;

}remote_control_t;

© 2024 DJI All Rights Reserved. 41

5. Non-Link Data Description
An operator can use a Custom Controller to operate a player client by simulating a keyboard and a mouse.

Table 5-1 Command code ID: 0x0306

Byte Offset Size Description Remarks

0 2

Keyboard key value.

 Bits 0-7: value of Key 1

 Bits 8-15: value of Key 2

 Only the keys made available by the

player client are responded to.

 A generic key value is used, and two

keys can be simultaneously pressed

with no conflict. Any change in key

sequence does not alter the effect of

the pressed keys. In the absence of any

new key information, the pressed

status of the last data frame will be

maintained.

2 2
 Bits 0-11: mouse's x-axis pixel position

 Bits 12-15: mouse's left-click status

 The position information is represented

by absolute pixel values (the resolution

used by player clients in the

competition is 1920 x 1080, and the

coordinates for the screen's upper left

corner is (0,0)).

 When the mouse's pressed status is 1, it

means the button is pressed; any other

value indicates the button is not

pressed. This information is responded

to only after the mouse icon appears. In

the absence of any new mouse

information, the player client maintains

the mouse information of the last data

frame. After the mouse icon disappears,

the data is no longer retained.

4 2

 Bits 0-11: mouse y-axis pixel position

 Bits 12-15: mouse right-click status

6 2 Reserved bits -

42 © 2024 DJI All Rights Reserved.

To move and click the mouse once, you need to first send the data frame for the specified position when

the mouse is not pressed, then send the data frame obtained when the mouse is pressed at the same

position, and finally send the data frame obtained when the mouse is pressed at the same position.

typedef _packed struct
{

uint16_t key_value;
 uint16_t x_position:12;
 uint16_t mouse_left:4;
 uint16_t y_position:12;
 uint16_t mouse_right:4;
 uint16_t reserved;
}custom_client_data_t;

© 2024 DJI All Rights Reserved. 43

Appendix 1 CRC Code Samples
//crc8 generator polynomial:G(x)=x8+x5+x4+1
const unsigned char CRC8_INIT = 0xff;
const unsigned char CRC8_TAB[256] =
{
0x00, 0x5e, 0xbc, 0xe2, 0x61, 0x3f, 0xdd, 0x83, 0xc2, 0x9c, 0x7e, 0x20, 0xa3, 0xfd, 0x1f, 0x41,
0x9d, 0xc3, 0x21, 0x7f, 0xfc, 0xa2, 0x40, 0x1e, 0x5f, 0x01, 0xe3, 0xbd, 0x3e, 0x60, 0x82, 0xdc, 0x23, 0x7d, 0x9f,
0xc1, 0x42, 0x1c, 0xfe, 0xa0, 0xe1, 0xbf, 0x5d, 0x03, 0x80, 0xde, 0x3c, 0x62, 0xbe, 0xe0, 0x02, 0x5c, 0xdf, 0x81,
0x63, 0x3d, 0x7c, 0x22, 0xc0, 0x9e, 0x1d, 0x43, 0xa1, 0xff, 0x46, 0x18, 0xfa, 0xa4, 0x27, 0x79, 0x9b, 0xc5, 0x84,
0xda, 0x38, 0x66, 0xe5, 0xbb, 0x59, 0x07, 0xdb, 0x85, 0x67, 0x39, 0xba, 0xe4, 0x06, 0x58, 0x19, 0x47, 0xa5,
0xfb, 0x78, 0x26, 0xc4, 0x9a, 0x65, 0x3b, 0xd9, 0x87, 0x04, 0x5a, 0xb8, 0xe6, 0xa7, 0xf9, 0x1b, 0x45, 0xc6,
0x98, 0x7a, 0x24, 0xf8, 0xa6, 0x44, 0x1a, 0x99, 0xc7, 0x25, 0x7b, 0x3a, 0x64, 0x86, 0xd8, 0x5b, 0x05, 0xe7,
0xb9,
0x8c, 0xd2, 0x30, 0x6e, 0xed, 0xb3, 0x51, 0x0f, 0x4e, 0x10, 0xf2, 0xac, 0x2f, 0x71, 0x93, 0xcd, 0x11, 0x4f, 0xad,
0xf3, 0x70, 0x2e, 0xcc, 0x92, 0xd3, 0x8d, 0x6f, 0x31, 0xb2, 0xec, 0x0e, 0x50, 0xaf, 0xf1, 0x13, 0x4d, 0xce, 0x90,
0x72, 0x2c, 0x6d, 0x33, 0xd1, 0x8f, 0x0c, 0x52, 0xb0, 0xee, 0x32, 0x6c, 0x8e, 0xd0, 0x53, 0x0d, 0xef, 0xb1, 0xf0,
0xae, 0x4c, 0x12, 0x91, 0xcf, 0x2d, 0x73, 0xca, 0x94, 0x76, 0x28, 0xab, 0xf5, 0x17, 0x49, 0x08, 0x56, 0xb4, 0xea,
0x69, 0x37, 0xd5, 0x8b, 0x57, 0x09, 0xeb, 0xb5, 0x36, 0x68, 0x8a, 0xd4, 0x95, 0xcb, 0x29, 0x77, 0xf4, 0xaa,
0x48, 0x16, 0xe9, 0xb7, 0x55, 0x0b, 0x88, 0xd6, 0x34, 0x6a, 0x2b, 0x75, 0x97, 0xc9, 0x4a, 0x14, 0xf6, 0xa8,
0x74, 0x2a, 0xc8, 0x96, 0x15, 0x4b, 0xa9, 0xf7, 0xb6, 0xe8, 0x0a, 0x54, 0xd7, 0x89, 0x6b, 0x35,
};
unsigned char Get_CRC8_Check_Sum(unsigned char *pchMessage,unsigned int dwLength,unsigned char
ucCRC8)
{
unsigned char ucIndex;
while (dwLength--)
{
ucIndex = ucCRC8^(*pchMessage++);
ucCRC8 = CRC8_TAB[ucIndex];
}
return(ucCRC8);
}
/*
** Descriptions: CRC8 Verify function
** Input: Data to Verify,Stream length = Data + checksum
** Output: True or False (CRC Verify Result)
*/
unsigned int Verify_CRC8_Check_Sum(unsigned char *pchMessage, unsigned int dwLength)
{
unsigned char ucExpected = 0;
if ((pchMessage == 0) || (dwLength <= 2)) return 0;
ucExpected = Get_CRC8_Check_Sum (pchMessage, dwLength-1, CRC8_INIT);
return (ucExpected == pchMessage[dwLength-1]);
}

44 © 2024 DJI All Rights Reserved.

/*
** Descriptions: append CRC8 to the end of data
** Input: Data to CRC and append,Stream length = Data + checksum
** Output: True or False (CRC Verify Result)
*/
void Append_CRC8_Check_Sum(unsigned char *pchMessage, unsigned int dwLength)
{
unsigned char ucCRC = 0;
if ((pchMessage == 0) || (dwLength <= 2)) return;
ucCRC = Get_CRC8_Check_Sum ((unsigned char *)pchMessage, dwLength-1, CRC8_INIT);
pchMessage[dwLength-1] = ucCRC;
}

uint16_t CRC_INIT = 0xffff;
const uint16_t wCRC_Table[256] =
{
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,

© 2024 DJI All Rights Reserved. 45

0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78

}；

/*
** Descriptions: CRC16 checksum function
** Input: Data to check,Stream length, initialized checksum
** Output: CRC checksum
*/
uint16_t Get_CRC16_Check_Sum(uint8_t *pchMessage,uint32_t dwLength,uint16_t wCRC)
{
Uint8_t chData;
if (pchMessage == NULL)
{
return 0xFFFF;
}
while(dwLength--)
{
chData = *pchMessage++;
(wCRC) = ((uint16_t)(wCRC) >> 8) ^ wCRC_Table[((uint16_t)(wCRC) ^ (uint16_t)(chData)) & 0x00ff];
}
return wCRC;
}

/*
** Descriptions: CRC16 Verify function
** Input: Data to Verify,Stream length = Data + checksum
** Output: True or False (CRC Verify Result)
*/
uint32_t Verify_CRC16_Check_Sum(uint8_t *pchMessage, uint32_t dwLength)
{
uint16_t wExpected = 0;
if ((pchMessage == NULL) || (dwLength <= 2))
{
return __FALSE;
}
wExpected = Get_CRC16_Check_Sum (pchMessage, dwLength - 2, CRC_INIT);

46 © 2024 DJI All Rights Reserved.

return ((wExpected & 0xff) == pchMessage[dwLength - 2] && ((wExpected >> 8) & 0xff) ==
pchMessage[dwLength - 1]);
}

/*
** Descriptions: append CRC16 to the end of data
** Input: Data to CRC and append,Stream length = Data + checksum
** Output: True or False (CRC Verify Result)
*/
void Append_CRC16_Check_Sum(uint8_t * pchMessage,uint32_t dwLength)
{
uint16_t wCRC = 0;
if ((pchMessage == NULL) || (dwLength <= 2))
{
return;
}
wCRC = Get_CRC16_Check_Sum ((U8 *)pchMessage, dwLength-2, CRC_INIT);
pchMessage[dwLength-2] = (U8)(wCRC & 0x00ff);
pchMessage[dwLength-1] = (U8)((wCRC >> 8)& 0x00ff);

© 2024 DJI All Rights Reserved. 47

Appendix 2 ID Descriptions
The robot IDs are as follows:

 1: Red Team's Hero Robot

 2: Red Team's Engineer Robot

 3/4/5: Red Team's Standard Robot (corresponding to robot IDs 3-5)

 6: Red Team's Aerial Robot

 7: Red Team's Sentry Robot

 8: Red Team's Dart

 9: Red Team's Radar

 10: Red Team's Outpost

 11: Red Team's Base

 101: Blue Team's Hero Robot

 102: Blue Team's Engineer Robot

 103/104/105: Blue Team's Standard Robot (corresponding to robot IDs 3-5)

 106: Blue Team's Aerial Robot

 107: Blue Team's Sentry Robot

 108: Red Team's Dart

 109: Blue Team's Radar

 110: Blue Team's Outpost

 111: Blue Team's Base

The player client IDs are as follows:

 0x0101: Red Team's Hero Robot player client

 0x0102: Red Team's Engineer Robot player client

 0x0103/0x0104/0x0105: Red Team's Standard Robot player client (corresponding to robot IDs 3-5)

 0x0106: Red Team's Aerial Robot player client

 0x016A: Blue Team's Aerial Robot player client

 0x0165: Blue Team's Hero Robot player client

 0x0166: Blue Team's Engineer Robot player client

48 © 2024 DJI All Rights Reserved.

 0x0167/0x0168/0x0169: Blue Team's Standard Robot player client (corresponding to robot IDs 3-5)

 0x8080: Referee System's server (for sending decision-making commands to Sentry Robots and Radar)

© 2024 DJI All Rights Reserved. 49





 0x016A: Blue Team’s Aerial Robot player client

0x016A: Blue Team’s Aerial Robot player client

typedef __pack struct
{
uint16_t target_robot_ID;
float target_position_x;
float target_position_y;
float target_position_yaw;
} ext_robot_command_t

Robot ID: 1. Hero (Red); 2. Engineer (Red): 3/4/5. Standard (Red); 6. Aerial (Red); 7. Sentry (Red); 8. Base (Red);

9. Outpost (Red); 11. Hero (Blue); 12. Engineer (Blue); 13/14/15. Standard (Blue); 16. Aerial (Blue); 17. Sentry

(Blue); 18. Base (Blue); 19. Outpost (Blue)

	Change Log
	1. Serial Port Protocol Format
	Table 1-1 Communication protocol format
	Table 1-2 Frame header format
	Table 1-3 Frame header definitions

	2. Command Code IDs and Regular Link Data Description
	Table 2-1 Overview of command code IDs
	Table 2-2 0x0001
	Table 2-3 0x0002
	Table 2-4 0x0003
	Table 2-5 0x0101
	Table 2-6 0x0102
	Table 2-7 0x0104
	Table 2-8 0x0105
	Table 2-9 0x0201
	Table 2-10 0x0202
	Table 2-11 0x0203
	Table 2-12 0x0204
	Table 2-13 0x0205
	Table 2-14 0x0206
	Table 2-15 0x0207
	Table 2-16 0x0208
	Table 2-17 0x0209
	Table 2-18 0x020A
	Table 2-19 0x020B
	Table 2-20 0x020C
	Table 2-21 0x020D
	Table 2-22 0x020E
	Table 2-23 0x0301
	Table 2-24 Sub-content ID: 0x0100
	Table 2-25 Sub-content ID: 0x0101
	Table 2-26 Graphic detail parameters
	Table 2-27 Sub-content ID: 0x0102
	Table 2-28 Sub-content ID: 0x0103
	Table 2-29 Sub-content ID: 0x0104
	Table 2-30 Sub-content ID: 0x0110
	Table 2-31 Decision-making command of a Sentry: 0x0120
	Table 2-32 Decision-making command of a Radar: 0x0121

	3. Small Map Interaction Data
	3.1 Data Transmission by Player Clients
	Table 3-1 Command code ID: 0x0303

	3.2 Data Receiving by Player Clients
	Table 3-2 Command code ID: 0x0305
	Table 3-3 Command code ID: 0x0307
	Table 3-4 Command code ID: 0x0308

	4. VTM Link Data Descriptions
	4.1 Custom Controller and Robot Interaction Data Descriptions
	Table 4-1 Command code ID: 0x0302

	4.2 Keyboard-Mouse Remote Control Data
	Table 4-2 Command code ID: 0x0304

	5. Non-Link Data Description
	Table 5-1 Command code ID: 0x0306

	Appendix 1 CRC Code Samples
	Appendix 2 ID Descriptions

